Showing posts with label General Pathology. Show all posts
Showing posts with label General Pathology. Show all posts

Friday, October 28, 2011

Regeneration healing (repair)-General Pathology Lecture note



Objectives of this Post
  • Review the normal physiology and concepts of cell proliferation, cell growth, cell “cycle”, and cell differentiation
  • Understand the basic factors of tissue regeneration
  • Understand the relationships between cells and their extracellular matrix (eECM)
  • Understand the roles of the major players of healing---angiogenesis, growth factors (GFS), and fibrosis
  • Differentiate 1st & 2nd intention healing
Definitions:
Regeneration: growth of cells to replace lost tissues
Healing: a reparative tissue response to a wound, inflammation or necrosis, often leads to fibrosis 
Granulation tissue 
“Organizing” inflamation

Regeneration
  • Replacement of lost structures
  • Is dependent on the type of normal turnover the original tissue has
  • Can be differentiated from “compensatory” growth

Healing (repair)
  • Needs a wound, inflammatory process, or necrosis
  • Many disease appearances anatomically are the result of “healing” such as atherosclerosis
  • Often ends with a scar
  • Fibrosis, as one of the 3 possible outcomes of inflammation, follows “healing”
  • Requires a connective tissue “scaffold”
  • Fibrosis occurs in proportion to the damage of the ECM
 
Cell population fates
Proliferation
  • Hormonal, especially steroid hormones
  • Eg., EPO, CSF
Differentiation*
  • Unidirectional, gain and loss

Apoptosis
*One of the most key concepts in neoplasia
  • Ectoderm
  • Mesoderm
  • Entoderm

Cell cycle

G0
Quiescent (not a very long or dominent phase)

G1
Pre-synthetic, but cell growth taking place

S
  • Cells which have continuous “turnover” have longer, or larger s-phases, i.e., dna synthesis
  • S-phase of tumor cells can be prognostic
G2
Pre-mitotic

M (mitotic:, P,M,A,T cytokinesis)

Cell types
Labile: eg. marrow, GI
Quiescent: liver, kidney
Non-mitotic: neuron, striated muscle

Stem cells (totipotential*)
  1. Embryonic
  2. Adult
Embryonic stem cells
  • Differentiation
  • Knockout mice (mice raised with specific gene defects)
  • Repopulation of damaged tissues, in research
Adult Stem cells

Marrow (hemocytoblast)
(hematopoetic stem cells)

Non-marrow (reserve)

Marrow stromal cell

Adult tissue differentiation and regeneration parallels embryonic development

Growth factors (GFS)
Polypeptides
Cytokines
  • Locomotion
  • Contractility
  • Differentiation
  • Angiogenesis
Growth factors (GFS)
Epidermal
Transforming (alpha, beta)
Hepatocyte
Vascular endothelial
Platelet derived
Fibroblast
Keratinocyte
Cytokines (TNF, IL-1, interferons)


Cell players (source and targets)
  • Lymphocytes, especially t-cells
  • Macrophages
  • Platelets
  • Endothelial cells
  • Fibroblasts
  • Keratinocytes
  • “mesenchymal” cells
  • Smooth muscle cells
E(epidermal) GF
  • Made in platelets, macrophages
  • Present in saliva, milk, urine, plasma
  • Acts on keratinocytes to migrate, divide
  • Acts on fibroblasts to produce “granulation” tissue
T(transforming) GF-alpha
  • Made in macrophages, t-cells, keratinocytes
  • Similar to egf, also effect on hepatocytes
H(hepatocyte) GF
  • Made in “mesenchymal” cells
  • Proliferation of epithelium, endothelium, hepatocytes
  • Effect on cell “motility”
Ve(vascular endothelial) GF
  • Made in mesenchymal cells
  • Triggered by hypoxia
  • Increases vascular permeability
  • Mitogenic for endothelial cells
  • Key substance in promoting “granulation” tissue
Pd(platelet derived) GF
  • Made in platelets, but also many other cell types
  • Chemotactic for many cells
  • Mitogen for fibroblasts
  • Angiogenesis
  • Another key player in granulation tissue
F(fibroblast) GF
  • Made in many cells
  • Chemotactic and mitogenic, for fibroblasts and keratinocytes
  • Re-epithelialization
  • Angiogenesis, wound contraction
  • Hematopoesis
  • Cardiac/skeletal (striated) muscle
T(transforming) GF-beta
  • Made in many cells
  • Chemotactic for PMNS and many other types of cells
  • Inhibits epithelial cells
  • Fibrogenic
  • Anti-inflammatory
K(keratinocyte) GF

  • Made in fibroblasts
  • Stimulates keratinocytes:
    • Migration
    • Proliferation
    • Differentiation
I (insulin-like) GF-1
  • Made in macrophages, fibroblasts
  • Stimulates:
    • Sulfated proteoglycans
    • Collagen
    • Keratinocyte migration
    • Fibroblast proliferation
  • Action similar to gh (pituitary growth hormone)
TNF (tumor necrosis factor)
  • Made in macrophages, mast cells, t-cells
  • Activates macrophages
  • Key influence on other cytokines
Interleukins
  • Made in macrophages, mast cells, t-cells, but also many other cells
  • Many functions:
  • Chemotaxis
  • Angiogenesis
  • Regulation of other cytokines

Interferons
  • Made by lymphocytes, fibroblasts
  • Activates macrophages
  • Inhibits fibroblasts
  • Regulates other cytokines
Signaling
  • Autocrine (same cell)
  • Paracrine (next door neighbor) (many gfs)
  • Endocrine (far away, delivered by blood, steroid hormones)

Transcription factors
Hepatic
Regeneration
  • TNF
  • IL-6
  • HGF

Extracellular matrix (ECM)
  • Collagen(s) I-xviii
  • Elastin
  • Fibrillin
  • Cams (cell adhesion molecules)
    • Immunoglobulins, cadherins, integrins, selectins
  • Proteoglycans
  • Hyaluronic acid
ECM
  • Maintain cell differentiation
  • “scaffolding”
  • Establish microenvironment
  • Storage of GF’s
  1. Collagen one - bone (main component of bone)
  2. Collagen two - cartwolage (main component of cartilage)
  3. Collagen three - rethreeculate (main component of reticular fibers)
  4. Collagen four - floor - forms the basement membrane
Genetic collagen disorders
  • I                               osteogenesis imperfecta, e-d
  • Ii                              achondrogenesis type ii               
  • Iii                             vascular ehlers-danlos
  • V                             classical  e-d
  • Ix                            stickler syndrome
  • Iv                            alport syndrome
  • Vi                            bethlem myopathy
  • Vii                           dystrophic epidermolysis bullos.
  • Ix                            epiphyseal dysplasias
  • Xvii         gen. Epidermolysys bullosa
  • Xv, xviii knobloch syndrome

Definitions:
Regeneration: growth of cells to replace lost tissues
Healing: a reparative tissue response to a wound, inflammation or necrosis

Healing
  • Follows inflammation
  • Proliferation and migration of connective tissue cells
  • Angiogenesis (neovascularization)
  • Collagen, other ecm protein synthesis
  • Tissue remodeling
  • Wound contraction
  • Increase in wound strength (scar = fibrosis)
Angiogenesis (neovascularization)
  • From endothelial precursor cells
  • From pre-existing vessels
  • Stimulated/regulated by gf’s, especially VEGF
  • Also regulated by ECM proteins
  • AKA, “granulation”, “granulation tissue”, “organization”, “organizing inflammation”



Wound healing
1 intention
Edges lined up
 
2 intention
Edges not lined up
Ergo….
More granulation
More epithelialization
More fibrosis



“Healthy” granulation tissue

Fibrosis/scarring
  • Deposition of collagen by fibroblasts
  • With time (weeks, months, years?) The collagen becomes more dense, ergo, the tissue becomes “stronger”
Wound retarding factors (local)
  • Decreased blood supply
  • Denervation
  • Local infection
  • FB
  • Hematoma
  • Mechanical stress
  • Necrotic tissue
Wound retarding factors (systemic)
  • Decreased blood supply
  • Age
  • Anemia
  • Malignancy
  • Malnutrition
  • Obesity
  • Infection
  • Organ failure



Friday, June 10, 2011

Cellular Adaptations PowerPoint Presentation Free Download


Cellular Adaptations PowerPoint Presentation includes
  • Hyperplasia
  • Hypertrophy
  • Atrophy
  • Cellular adaptation to abnormal stimuli
  • Metaplasia
Cellular Adaptations
PowerPoint Presentation Free Download

Skin Pigmentations and Calcifications PowerPoint Presentation free Download


This "Skin Pigmentations and Calcifications" PowerPoint Presentation Includes
  • Skin Pigments
  • Hyper pigmentation
  • Hypo pigmentation
  • Addison’s disease
  • CafĂ© Au Leit Pigmentation
  • Neurofibromatosis
  • Hyper-pigmented skin nodules
  • Lack of pigmentation
  • Vitiligo
  • Ochronosis
  • Haemosiderosis
  • Haemachromatosis/Bronze diabetes
  • Wilson’s disease
  • Lipofuscins
  • Exogenous pigments
  • Heterotrophic calcification
  • Dystrophic calcification
  • Metastatic calcification
  • Mechanism of calcification
  • Chondrocalcinosis
Skin Pigmentations and Calcifications
PowerPoint Presentation Free Download

Thursday, June 9, 2011

Chronic Inflammation,Granulomatous Dieases,Tuberculosis Pathology Lecture Note

Chronic inflammation

Chronic Suppurative on acute:

Chronic granulomatus: (Initiates without an acute phase)

Suppurative in type:

Abscesses

Inadequate or delayed drain leads to thick fibrous wall formation.

The residual bacteria get reactivated

Pus formation.

Presence of foreign material or indigestible dead tissue.

Eg: Osteomyelitis, damaged Collagen

Chronic inflammation

Follow acute inflammation

Persistence of the stimulus

Disturbance to the healing process

Repeated bouts of acute inflammation and healing in between.

Low grade persistent infection.

Definition

Prolong process in which destruction and acute inflammation proceeds together with the healing process.

Causes

Sequelae of an acute inflammation

Foreign bodies

Microorganisms where body can mount limited immune reactions

Impaired body defense

Immune reactions

Chronic inflammation without an acute phase

Infection: TB, Leprosy, Syphilis

Immunological: Rheumatiod arthritis Ulcerative colitis Crohn’s disease

Poor bloodsupply (leg ulcer)

Chronic inflammatory lesions

May vary histologically according to causative agent

However there is a set of morphological features in common.

Histologically

Infiltration by mononuclear cells

Macrophages

lymphocytes

plasma cells

Proliferation of blood vessels/fibrosis (angiogenesis)

Fibrosis

Tissue destruction (induce by inflammatory cells)

Mononuclear phagocytic system

Blood monocyte:

Macrophages (at extra vascular tissue)

Tissue macrophages (Scattered in connective tissue or concentrated in organs)

Eg: Kupffer cells in Liver

Sinus histiocytes in lymph nodes

Alveolar macrophages in lung

Osteoclasts in bones

Microglia (CNS)

Monocytes

Migration

Morphological transformation (macrophages and giant cells)

Activation

Secretion of biologically active products

Cells types present

Macrophages

Lymphocytes

Eiosenophils

Mast cells

Existence of CI, AI and repair

Macrophages persist at the site (Due to the influence of chemical mediators)

Destruction of invading microorganisms /normal tissues

Secretion of chemical mediators by macrophages

Functions of them,

Proliferation of fibroblasts, Laying down of collagen

Angiogenesis, Activation of lympho macrophages

· Dead and dieing leukocytes/necrotic tissues helps in developing acute inflammation

Granulomas /Granulomatus infection

Chronic inflammatory lesion in the form of mass.

Collection of macrophages or modified macrophages (epitheliod / giant cells)

Granulomas /Granulomatus infection

A granuloma is a focal area of granulomatus inflammation.

Consist of macrophage aggregation

Epithelial cell transformation

Collar of lymphocytes

Appearance giant cells and of fibrosis can see with the time

Eg:

TB

Sarcoidosis

Cat scratch disease

Leprosy

Syphilis

Mycotic infections

Two types of granulomas: Base on pathogenesis

Foreign body type:

Form around foreign bodies

Immune type: When the foreign practical are capable of induce cell mediate immune responses

(but not always granulomas will develop)

Definition

Granulomas is a result of chronic inflammatory reaction containing a collection of cells of monocytic series arrange in a compact mass.

Cells

Macrophages

Epithelioid cells

Giant cells: Langhans giant cells

Foreign body type giant cells

Accumulation of macrophages

· Under the influence of chemotaxis

C5a, fibrinopeptides, cationic proteins

Lymphokines :

PDGF, TGF(beta)

products of collagen brake down

· By mitotic division

· Immobilization and prolong survival (if the irritants are low virulent )

Tuberculosis

· Chronic disease common worldwide.

· Causes a characteristic granulomatous inflammation

· Inability of the neutrophils to kill the micro organisms due to lipoprotein coating.

· Mycobacterium tuberculosis.

Hominis (lungs)

Bovis (Tonsils, Intestine)

Spread

Droplet from patients (weeks or months)

Conjunctiva

Punctures

However need sustain contact than casual contact.

Tissue damage

MT has no Endotoxins

Exotoxins

Histiolitic enzymes

Development of immune response against outer coat of the organism.

Tuberculin test

2 to 4 weeks after infection : + Tuberculin test

PPD (purified protein derivative)

(Culture in which TB is grown)

Induration More that 5.mm within 48 hours.

Positivity indicates infection but not the disease.

Primary Tuberculosis

Occurs in individuals who have never previously been infected with M. tuberculosis (childhood infection if TB is common, adult life if uncommon)

Usually caused by inhalation of the organisms or rarely by ingestion of the organism.

Primary infection

Lungs Hilum

Tonsils neck nodes

Intestine mesentery

Primary Tuberculosis

In respiratory system, inhalation of the organisms cause a subpleural lesion usually in the lower part of the upper lobe or upper part of the lower lobe. This is called Ghon focus.

Location is in these sites is because bacterium is a strict aerobe and prefers these well oxygenated regions

Ghon’s focus

· When the tissue is invaded by the mycobacteria there is no hypersensitivity reaction. Instead there is acute, non specific inflammatory response with predominant neutrophils.

· This is followed by macrophages which ingest the bacilli and present Ags to to T lymphocytes leading to proliferation of a clone of T cells .

· The emergence of specific hypersensitivity lead to release of lymphokines,that attract more macrophages.

· These accumulate to form the characteristic granuloma.

Ghon focus

Usually single

1 to 2 cm

Location –Beneath pleura- mid zone of the lung

Primary complex

Tubercle bacilli, either free or contained in macrophages, may drain to the regional lymph nodes and set up granulomatous inflammation, causing massive lymph node enlargement.

The combination of the Ghon focus, draining lymphatics and the regional lymph nodes is called the primary complex.

Calcification of the lymph nodes


Microscopic appearance



Sequelae of primary complex

Healing with small fibrous scar replacing caseous necrosis. Lesion will be walled off.

Calcification

Reactivation of infection later when host defences become lowered.

plural effusion

Enlarged caseous nodes can obstruct bronchi, leading to collapse, retention of secretion and inflammatory consolidation

Caseous node erodes into a bronchi with satellite lesions in lungs (TB bronchopneumonia).

Eroding into a pulmonary vein causing generalised milliary TB.

Erosion into pulmonary artery leads to miliary TB of lungs

TB bronchopneumonia

· Opening of the caseous node to a bronchus.

· Air bone infection

· TB bronchopneumonia

· (Multiple pneumonic patches arrangeed in and around terminal bronchi)

· The lesions spread rapidly and accumulate macrophages and lymphocytes followed by necrosis

TB bronchopneumonia

Necrotic patches get enlarged and discharged which will lead to dissemination and cavitations. (no fibrous walls)

Pneumothorax

TB bronchopneumonia can happen after both 1ry and 2ry TB.

Rapidly spreading tuberculous bronchopneumonia: debilitated by intercurrent disease, diabetes, malnutrition etc.

Acute miliary tuberculosis of the lungs due to blood stream spread to lungs. Grey tubercles visible to naked eye 3mm in diameter. More numerous and larger in upper lobes than lower lobes. Microscopically these are ill formed and often giant cells are absent. Usually these lesions do not cavitate

Effects on the other organs of the body

Miliary tuberculosis due to systemic spread to kineys, spleen, brain, liver etc.

Tuberculous ulcers in the intestine due swallowed sputum.

Tuberculosis of larynx due to direct spread from sputum.

Secondary amyloidosis.


Miliary TB

Common with 1ry TB

Due to involvement of veins

Multiple scatted tubercles

Not well developed/uniform in size

1-2 mm

Some times without giant cells (necrosis)

Secondary Tuberculosis (Post primary)

Infection may me exogenous or endogenous

After active primary infection

Reactivation asymptomatic primary lesions:

Malnutrition,

Severe illness,

Intercurrent lung infection,

Systemic immunosuppression

Exogenous: caused by inhaled organisms

Immunity

During primary tuberculosis or during BCG immunisation, the patient develops cell mediated immunity to antigens of tubercle bacillus.

This is demonstrated by skin test (Mantoux) test

Immunity is associated with increased resistance to subsequent infection.

Re infected lesions:

Apex of the lungs

Endogenous infections (swallowing sputum)

Metastatic lesions are similar to re-infected

Lesions

Large in size (spread locally) no lymph node involvement


Cavity formation

Caseous material discharge gradually leaving a small cavity.

Cavities can become very large with overgrowth of fibrous tissue.

Cavity walls are irregular with raised bands representing obliterated blood vessels.

The surface is lined by caseous material or by pus and debris mixed with blood.

If the disease is inactive the wall becomes very smooth

· In early cases the lesions are often in the apices of the lungs

· In advanced cases there may be more than one cavitatory lesion.

· All the lesions are distributed in the upper part of the lungs

· Caseation may involve the wall of a bronchus leading to obstruction of the lumen.

Sequelae of tuberculous cavities
Local effects

· Due to fibrosis lung tissue shrinks causing bronchiectasis (upper lobe bronchiectasis)

· Blood vessels can become weaken and rupture leading to haemoptysis

· Aneurysm formation- called Rasmoussen’s aneurism leading to fatal haemorhage.

· Fungal infections can be localized in these cavities.

Popular Posts

Join This site