Wednesday, July 8, 2015

Problem based learning (PBL)


“True learning is based on discovery guided by mentoring rather than the transmission of knowledge.”

John Dewey

Introduction and History

In simple terms Problem-based learning (PBL) is a student centred education in which students learn about a subject through the experience of creating a problem. Problem- based learning or what we simply called PBL is based on research in the cognitive sciences on how we learn.
This educational strategy was developed at the McMaster University Medical School in Canada in the 1960s in medical education. Efficacy of this revolutionary learning method has made it popular among educationists and It is one of the big success stories in the education in the past few years.   But nowadays PBL is developed and implemented in a wide range of domains around the world. This approach empowers learners to conduct research, integrate theory and practice, and apply knowledge and skills to develop a viable solution to a defined problem .In simple words this simple revolutionary idea that problems should come before answers drives PBL.  Beginning with a problem puts you in the driver’s seat.  You can use your previous knowledge, your hunches, and your wildest ideas to try for a solution.  In the process you can develop an inventory of what you know and what you need to know to get to a solution.  Once you know that you can start questioning your instructor or your classmates, plundering the library, surfing the net, or bugging the many excellent experts to fill your needs. 

What is the difference between Subject based learning and Problem Based learning


What is wrong with the old teacher stand up and talk student sit and listen learning?  It doesn’t meet the needs.  It is too slow, too shallow, too inefficient and not much fun.  Students retain little of what they learn after even a few weeks.  Students rarely can apply what they have learned to the unpredictable problems of life and work. Students get little practice in developing their thinking skills and intellectuality or framing problems that interest them. As a result, students come to see learning as something grim to be avoided.
Problem based learning gives you opportunities to examine and try out what you already know; discover what you need to learn; develop your people skills for achieving higher performance in teams; improve your writing and speaking abilities, to state and defend with sound arguments and evidence your own ideas; and to become more flexible in your approach to problems that surprise and dismay others. Despite the work and effort it requires, PBL is never dull and is often fun.
Here is a diagram of the basic difference between subject based and problem based learning.


What is expected in Problem Based Learning?

According to the epistemological literature four types of knowledge can be identified.
  • 1     Explanatory knowledge-Theories
  • 2.       Descriptive Knowledge-Facts
  • 3.       Procedural Knowledge-Knowledge of how to do things
  • 4.       Subjective Knowledge- Personal convictions or attitudes of the learner

The PBL problems are in two varieties with regards to acquisition of above mentioned aspects of knowledge.
  • 1.       During the course of their study, students acquire different kinds of, or categories of knowledge about relevant aspects of their domain of study.
  • 2.       The problem types to be distinguished are meant to guide the learners towards these different knowledge categories.

In a problem based curricula four different kinds of problems have been identified.
  • ·         Explanation problems
  • ·         Fact-finding problems
  • ·         Strategy problems
  • ·         Moral dilemma resolution problems

Respectively they are effective in achieving explanatory knowledge, descriptive knowledge, procedural knowledge and subjective knowledge. Teacher, Mentor, or Guiding body has the freedom of designing the problems to drive learners to achieve the desired aspect of knowledge. Ideally it should be the combinations of all.

Characteristics of PBL

According to Barrows in 1996 there are six core characteristics of PBL are distinguished.
  • The first characteristic is that learning needs to be student-centred.
  • Second, learning has to occur in small student groups under the guidance of a tutor.
  • The third characteristic refers to the tutor as a facilitator or guide.
  • Fourth, authentic problems are primarily encountered in the learning sequence, before any preparation or study has occurred.
  • Fifth, the problems encountered are used as a tool to achieve the required knowledge and the problem-solving skills necessary to eventually solve the problem.
  • Finally, new information needs to be acquired through self-directed learning.

It is generally recognized that a seventh characteristic should be added: Essential for PBL is that students learn by analysing and solving representative problems. However authors also describes following features as essential components in PBL as well.
Students must have the responsibility for their own learning. The tutor is only a facilitator in this learning process.
The problem simulations used in problem-based learning must be ill-structured and allow for free inquiry. The real world problems are ill-structured and PBL should allow the trainers to develop their skill to identify the problem and develop realistic solutions.
Learning should be integrated from a wide range of disciplines or subjects. During PBL students should be able to access, study and integrate information from all the disciplines and reach to a more robust solution. The development of information systems and multidisciplinary approach in the present world support this task more than ever before.
Collaboration is essential. PBL provides the platform to share information and work productively with fellow people.
What students learn during their self-directed learning must be applied back to the problem with reanalysis and resolution.
A closing analysis of what has been learned from work with the problem and a discussion of what concepts and principles have been learned are essential.
Self and peer assessment should be carried out at the completion of each problem and at the end of every curricular unit.
The activities carried out in problem-based learning must be those valued in the real world.
Student examinations must measure student progress towards the goals of problem-based learning.
“Problem-based learning must be the pedagogical base in the curriculum and not part of a didactic curriculum.”

Rules in problem design

  • ·         Problem should consist of a title
  • ·         Well-formed problem consist of a concrete body text
  • ·         Each problem needs and instruction as to what to do with it
  • ·         A problem should be connected to the prior knowledge base students have
  • ·         A problem should raise students curiocity
  • ·         A problem should only introduce a limited number of issues for learning
  • ·         A problem should not take too much self-directed study time to acquire a fair understanding of the issues at hand

Advantages and Disadvantages of PBL

As in any educational theory there are advantages and limitations found in literature when creating or implementing problem based learning curriculum. Some of the advantages which were perceived by several authors are as follow.
  • ·        Students interest and benefit
  • ·        Minimizing faculty workload
  • ·        Long-term knowledge retention
  • ·        PBL provide a more challenging
  • ·        Motivating and enjoyable approach to education
  • ·        Students become actively engaged in meaningful learning rather than traditional memorization
  • ·        Increased responsibility for their learning and self-direction


Higher levels of comprehension and skill development occur than in traditional instruction and develop interpersonal collaboration and team work.

Following disadvantages has been encountered in PBL according to literature.

 Lack of systematic learning as in traditional learning in which the information is delivered in a well arranged manner

Difficulty in allocating time required in a course schedule

Students often express difficulties with self-directed learning whereas the teachers may have difficulties to break their traditional teaching habits.

Also selecting the appropriate question will be critical and challenging too.

However the traditional student assessment systems should be changed in assessing a student who was trained on PBL.

Summary

PBL has becoming a revolutionary method of leaning in the context of student centred learning. At the heart of PBL stands a problem. PBL process can be designed in the way the students achieve the different aspects of knowledge. As in any learning method PBL also has its own advantages and disadvantages.




Friday, June 26, 2015

Work place based assessments

What is Work place based assessment (WBA)?

The primary purpose of WPBA is to provide short loop feedback between trainers and their trainees – a formative assessment to support learning. They are designed to be mainly trainee driven but may be triggered or guided by the trainer.

What is the Purpose of WBA?

Several purposes of WBA has been identified. WBA helps to form a comprehensive assessment system, blueprinted to important curriculum requirements. It also provides educational feedback on which to reflect and develop practice. Another purpose of WBA is it provides a reference point on which to compare past, current and future levels of competence. WBA also supports remedial / targeted training and Provides evidence of progression. At the end of WBA it informs summative assessment

Benefits of WBA

Main benefit of WBA is it has a strong educational impact. Availability of clinical materials and skilled teachers are other benefits of WBA. Some other benefits of WBA are,
       WBA is Based on observable performance and specific criteria
       Encompasses skills, knowledge, behaviour and attitudes including judgement and leadership
       Provides descriptors to aid the assessor’s judgement
       Samples across important workplace tasks
       Encourages trainee/trainer dialogue
       Can identify those in need of additional support
       Encourages reflection to improve practice
       Provides a personal trajectory of progress
       Indicates readiness for summative tests

Position of work place based assessment in Miller’s Pyramid


Preparation for WBA

First most important fact in WBA is Patient consent and safety must be assured by the assessor. Also the assessors should be trained in the tool and have expertise in the area being assessed. Reliability of assessing can be improved by using on a range of different assessors. It Should be used in different settings with different cases.

Use of WBA

       Trainee led and  trainer guided
       Structured forms should inform debriefing
       Feedback immediately after observation
       Written feedback should describe performance
       WBA should be followed by reflection by the trainee
       Use more often for trainees who need remedial support
       Judge the trainee against the standard at the end point 
       The interaction between trainee and trainer is key

Trainee role

       Triggers WBA, in line with the LA
       Puts the safety of the patient first
       Agrees case and time with assessor in advance
       Ensures sufficient WBAs are completed throughout placement
       Uploads to the portfolio comments accurately within 2  weeks of assessment
       Respects confidentiality of patients and colleagues
       Reflects on feedback
       Follows up action plans

 

Assessor role

       Must be appropriately qualified in the relevant discipline
       Must be trained on  the WBA method
       Ensures consent and safety of patient
       Carries out observation and provides feedback
       Completes / checks online form and signs to validate
       Keeps the AES informed of issues or concerns

Criteria for feedback

There should be a written record describing performance to look back on.
Good quality feedback should:
       Reinforce what was done well
       Explain areas for development
       Suggest appropriate corrective action

Barriers to WBA

       Unintentionally seen as threatening (e.g. as mini-exams)
       Low ratings are seen as failures by trainees (and some trainers)
       Lack of trainer time, especially senior trainers

Actions to overcome barriers

       Provide faculty development  and trainee induction
       Promote WBA as opportunities for learning
       Written feedback puts ratings in context
       Low scores should be seen as the norm early on
       Provide time in job plans for those in key roles to use WBAs and discuss concerns

Utility of assessment

Refers to the relative value of using a type of assessment.
The criteria are:
       Reliability
       Validity
       Acceptability to users
       Feasibility of use
       Educational impact
It is unlikely that one assessment type will cover all these areas
The challenge is to improve the utility of all types of assessment to enhance the overall assessment system.

Reliability


Enhanced by:
       Assessor training
       Use of a range of assessors
       Use of all WBA methods
       Use of WBA frequently
       Triangulation with other assessments

Validity

Enhanced by:
       Blueprinting to curriculum and GMP
       Linking WBA with clear objectives within a structured a learning agreement
       Direct observation of workplace tasks
       Increasing complexity of tasks in line with progression through the training programme

Acceptability

Enhanced by:
       Providing assessor training and trainee induction to enhance understanding of criteria, standards and methods
       Interaction between trainee and trainer

Feasibility

Enhanced by:
       Linking WBA with clear objectives, standards and a structured learning agreement
       Assessing what trainees would normally do in training situations
       Working feedback into normal dialogue

Educational Impact

Enhanced by:
       Supervised training and appraisal
       Clear objectives and learning agreement
       Learning opportunities
       Good quality feedback
       Reflection on feedback

The Learning Environment

An environment that supports learning will:
       Ensure everyone understands and values their role and that of others in the educational process
       Provide faculty development and trainee induction
       Make time for training and assessment
       Encourage performance beyond competency; an aspiration to excellence
       Encourage the development of reflective practitioners
       Provide professional educational support
       Support trainers in making difficult decisions or negative judgements
       Support for trainees in difficulty

Types of Work place based assessments

Mini  Clinical Examination (CEX)
The CEX traditionally involved observation of the trainee carrying out a thorough history taking and physical examination and presenting their findings and diagnosis, and a written report of conclusions for the supervising clinician to evaluate.
Case-based discussions
Case-based discussion (CbD) in medical Foundation Training is a structured discussion with an assessor of clinical cases managed by the foundation doctor. Its strength is assessment and discussion of clinical reasoning. The foundation doctor selects two case records from patients they have seen recently, and in whose notes they have made an entry. The assessor selects one of these for the CbD session. The discussion starts from and is centred on the foundation doctor’s own record in the notes. CbD assesses medical record keeping, clinical assessment, investigation and referral, treatment rationale, follow up and future planning, professionalism and overall clinical care. Feedback is provided to the trainee immediately following the discussion.
  
Direct Observation of Procedural Skills (DOPS)
Direct observation of procedural skills (DOPS) has been defined as the observation and evaluation of a procedural skill performed by a trainee on a real patient. Procedural skills are also known as technical or practical skills. Evaluation by an experienced practitioner is carried out using either a checklist of defined tasks, a global rating scale, or a combination of both.
  
360 Degree assessment
Multiple assessors Including senior colleagues, nurses, AHPs is done. This includes the self assessment as well. Student would be assessed for their routine performance. Ultimately the feedback is reviewed with trainee and supervisor on agreed action plan.

Portfolios
Snadden (1998) describes a portfolio as “a collection of evidence that learning has taken place which in practice includes documentation of learning and progression, an articulation of what has been learned, and a reflection on these learning events/experiences.” Portfolios are used both as a learning tool to stimulate reflective, experiential and deep learning and as an assessment method to judge progression towards or achievement of specific learning objectives, competencies or fitness to practice. Depending on the specialised purpose of the portfolio, its content including evidence required, and assessment criteria vary from context to context. Any portfolio that is used for assessment purposes should clearly articulate the amount, type and quality of evidence required to establish proof of competence and the marking criteria used to evaluate the quality of the evidence.



Tuesday, December 30, 2014

Vitamin D-What, Where, When, How, Why?


Vitamins are not generally considered to be endocrine substance, but it is a organic dietary factors essential for healthy life. The term ‘ vitamin D ’ refers to two steroid like chemicals, namely ergocalciferol and cholecalciferol . Vitamin D is important for good health, growth and strong bones and may also help to prevent other diseases such as cancer, diabetes and heart disease. A lack of vitamin D is very common. Vitamin D is mostly made in the skin by exposure to sunlight.  A mild lack of vitamin D may not cause symptoms but can cause generalised aches and pains and tiredness. A more severe lack can cause serious problems such as rickets (in children) and osteomalacia (in adults), described below. Treatment is with vitamin D supplements. Some people are more at risk of vitamin D deficiency, and so are recommended to take vitamin D supplements routinely. These include all pregnant women, breast-fed babies, children under 5, and people aged 65 and over. Also, people who do not get much exposure to the sun, people with black or Asian skin types, people who do not go out in the sun and people with certain gut, liver or kidney diseases.  We have checked our own patients and found that 9/10 adults of South Asian origin are vitamin D deficient and something like 60% of our white patients are vitamin D deficient.  Most people present with aches and pains and tiredness.

What is vitamin D?
Vitamins are a group of chemicals that are needed by the body for good health. Foods that contain vitamin D include the following though many foods do not contain much vitamin D and exposure to the sun is a better source of vitamin D than foods. Vitamin D is a fat-soluble vitamin. Most foods contain very little vitamin D naturally , though some are fortified (enriched) with added vitamin D.  Foods that contain vitamin D include:
                -Oily fish (such as sardines, pilchards, herring, trout, tuna, salmon and mackerel).
                -Egg yolk.
                -Fortified foods (this means they have vitamin D added to them) such as margarine, some cereals, infant formula milk.

Action of Vitamin D
The 1,25 - (OH)2 -D 3 receptor belongs to a superfamily of nuclear hormone receptors, which bind to their ligand and alter transcription. The hormone travels in the bloodstream in equilibrium between bound and free forms. The latter form is freely able to enter cells, due to its lipophilic nature. The plasma 1,25 - (OH) 2 - D 3 - binding protein (DBP) recognizes the hormone specifi cally. 1,25 - (OH) 2 - D 3 binds to the nuclear receptor; the complex binds to specifi c hormone response elements on the target gene upstream of transcriptional activation sites, and new mRNA and protein synthesis result.
New proteins synthesized include osteocalcin, an important bone protein whose synthesis is suppressed by glucocorticoids. In the GIT, a calcium - binding transport protein (CaBP) is synthesized in response to the hormone – receptor activation of the genome.


Physiological actions of vitamin D

Bone-Vitamin D stimulates resorption of calcium from bone as part of its function to maintain adequate circulating concentrations of the ion. It also stimulates osteocalcin synthesis.
Gastrointestinal tract-1,25 - (OH) 2 - D 3 stimulates calcium and phosphate absorption from the gut through an active transport process. The hormone promotes the synthesis of calcium transport by enhancing synthesis of the cytosolic calcium – binding protein CaBP, which transports calcium from the mucosal to the serosal cells of the gut.
Kidney- 1,25 - (OH) 2 - D 3 may stimulate reabsorption of calcium into the tubule cells while promoting the excretion of phosphate. The tubule cells do possess receptors for vitamin D and CaBP.
Muscle-Muscle cells have vitamin D receptors, and the hormone may mediate muscle contraction through effects on the calcium fl uxes, and on consequent adenosine triphosphate (ATP) synthesis.
Pregnancy-During pregnancy, there is increased calcium absorption from the GIT, and elevated circulating concentrations of 1,25 - (OH) 2 - D 3 , DBP, calcitonin and PTH. During the last 6 months prior to birth, calcium and phosphorus accumulate in the fetus. The placenta synthesizes 1,25 - (OH) 2 - D 3 , as does the fetal kidney and bone. Nevertheless, the fetus still requires maternal vitamin D.
Other roles- Vitamin D may be involved in the maturation and proliferation of cells of the immune system, for example of the haematopoietic stem cells, and in the function of mature B and T cells.


Our main source of vitamin D is that made by our own bodies. 90% of our vitamin D is made in the skin with the help of sunlight.
Ultraviolet B (UVB) sunlight rays convert cholesterol in the skin into vitamin D. Darker skins need more sun to get the same amount of vitamin D as a fair-skinned person. The sunlight needed has to fall directly on to bare skin (through a window is not enough). 2-3 exposures of sunlight per week in the summer months (April to September) are enough to achieve healthy vitamin D levels that last through the year. Each episode should be 20-30 minutes to bare arms and face. This is not the same as suntanning; the skin simply needs to be exposed to sunlight.
So, vitamin D is really important for strong bones. In addition, vitamin D seems to be important for muscles and general health. Scientists have also found that vitamin D may also help to prevent other diseases such as cancer, diabetes and heart disease.

Who gets vitamin D deficiency?
Vitamin D deficiency means that there is not enough vitamin D in the body. Broadly speaking, this can occur in three situations:

1. Increased need for vitamin D
Growing children, pregnant women, and breast-feeding women.

2. Situations where the body is unable to make enough vitamin D
People who get very little sunlight on their skin are also at risk of vitamin D deficiency. This is more of a problem in the most northern parts of the world where there is less sun. In particular:
                 People who stay inside a lot or cover up when outside or use strict sunscreen
                 People with pigmented (dark coloured) skins and elderly people  
                 Some medical conditions can affect the way the body handles vitamin D.
                     People with Crohn's disease, coeliac disease, and some types of liver                                                     and kidney disease, are all at risk of vitamin D deficiency.
                 Vitamin D deficiency can also occur in people taking certain medicines -                                                  examples include: Carbamazepine, Phenytoin, prim done, barbiturates and some anti-HIV                    medicines
3. Not enough dietary vitamin D
Vitamin D deficiency is more likely to occur in people who follow a strict vegetarian or vegan diet, or a non-fish-eating diet.

How common is vitamin D deficiency?
It is very common. This is why we recommend a regular supplement to our patients.  A recent survey in the UK showed that more than half of the adult population in the UK had low vitamin D. This level is found to be greater in people who have dark skin.  In the winter and spring about 1 in 6 people has a severe deficiency. It is estimated that about 9 in 10 adults of South Asian origin may be vitamin D-deficient. Most affected people either don't have any symptoms, or have vague aches and pains, and are unaware of the problem.  80% of our Asian patients have been found to be deficient and 60% of our white patients have found to be deficient.

What are the symptoms of vitamin D deficiency?
Symptoms of vitamin D deficiency are tiredness or general aches.  Because symptoms of vitamin D deficiency are often very vague, the problem is often missed.

How is vitamin D deficiency diagnosed?
Vitamin D deficiency can be diagnosed by a blood test.  However, on balance if you have dark skin and live in the UK you should take supplements. It may be suspected from your medical history, symptoms, or lifestyle. A simple blood test for vitamin D level can make the diagnosis.

RECOMMENDATIONS – Your doctor will advise you if you have deficiency or insufficient vitamin D.  If you have a minor level of vitamin D deficiency we recommend patients buy vitamin D tablets equivalent to 10ug or 12.5ug.  Most are made from vegetables.   If you have been found to be deficient we would recommend you stay on this dose for life as treatment is often needed long-term because the cause of the deficiency, such as dark skin or not enough sunlight, is unlikely to be corrected in the future.  We have observed that it takes at least 6 months taking regular vitamin D for symptoms to resolve and the level of vitamin D to return to normal.  It should be noted that if you have severe deficiency the doctor may recommend that you take a higher dose of vitamin D for a limited time, often equivalent to 25ug for the first 3 months.  Please discuss this with your own doctor.  We recommend that patients buy vitamin D tablets as we are unable to prescribe vitamin D without calcium on the NHS and calcium prescriptions have been associated with increased kidney stones and it is for this reason that we recommend that our patients buy vitamin D.

Maintenance therapy after deficiency has been treated
The dose needed for maintenance maybe lower than that stated.  We advise patients to buy 10ug and take 2 a day.   When the body's stores of vitamin D have been replenished. maintenance treatment is often needed long-term, to prevent further deficiency in the future. This is because it is unlikely that any risk factor for vitamin D deficiency in the first place, will have completely resolved. The dose needed for maintenance may be lower than that needed to treat the deficiency.

Cautions when taking vitamin D supplements
Care is needed with vitamin D supplements in certain situations:
 1. If you are taking certain other medicines that can interact such as  Digoxin (for an irregular         heartbeat – atrial fibrillation),  Thiazide or diuretics (water tablets).                                                   
2. If you have medical conditions such as kidney stones, some types of                                                     kidney disease, liver disease or hormonal disease.
3. Vitamin D should not be taken by people who have high calcium levels.
4. You may need more than the usual dose if taking certain medicines such as Carbamezapine, Phenytoin. HRT or barbiturates. Multivitamins are not suitable for long-term high-dose treatment because the vitamin A which can be harmful in large amounts.

Are there any side-effects from vitamin D supplements?
It is very unusual to get side effects from vitamin D if taken in the prescribed dose. However, very high doses can raise calcium levels in the blood. This would cause symptoms such as thirst, passing a lot of urine, nausea or vomiting.

Prognosis (outlook) in vitamin D deficiency?
The outlook for vitamin D deficiency is usually excellent. Both the vitamin levels and the symptoms generally respond well to treatment. However, it can take time (months) for symptoms to resolve and for bones to recover.  Generally after 6 months of using Vitamin D tablets the patient feels a lot better and symptoms have improved.  This does not mean you need to stop taking the medication.  Vitamin D supplementation is for life.



Monday, December 29, 2014

MCQ on Urinary System Physiology


1) The nephron is:
     a. the site of urine storage
     b. the functional unit of the kidney
     c. the site where ADH is produced
     d. also called the "Bowman's capsule"


2. Which of the following is NOT a stage of urine formation:
     a. glomerular filtration
     b. glomerular secretion
     c. tubular secretion
     d. tubular reabsorption


3. Which of the following is NOT a means of regulating glomerular filtration:
     a. muscular regulation
     b. renal autoregulation
     c. hormonal regulation
     d. neuronal regulation


4. Increased sympathetic nervous system stimulation of afferent arterioles results in:
     a. decreased filtrate production
     b. increased filtrate production
     c. no change in filtration rate
     d. increased kidney function


5. Renin is produced by:
     a. the glomerulus
     b. macula densa
     c. proximal convuluted tubule
     d. juxtaglomerular cells


6. The function of the macula densa cells is to:
     a. prevent water reabsorption in the ascending loop of Henle
     b. add bicarbonate ions to the tubular filtrate
     c. secrete renin in response to decreased afferent arteriole pressure
     d. monitor NaCl concentration in the filtrate
     e. reabsorb Na+ ions into blood from the filtrate


7. Atrial naturiuretic peptide works to:
     a. increase afferent arteriole pressure
     b. increase blood flow to the kidney
     c. enhance the effects of ADH
     d. inhibit the effects of aldosterone
     e. increase blood volume


8. If the level of aldosterone in the blood increases, then:
     a. less sodium is excreted in the urine
     b. less potassium is excreted in the urine
     c. systemic blood pressure will decrease
     d. glomerular filtration will decrease
     e. both c and d


9. The most important function of the juxtaglomerular apparatus (JGA) is to:
     a. secrete water and sodium into the filtrate
     b. reabsorb sodium
     c. generate bicarbonate ions in response to decreased blood pH
     d. secrete renin in response to decreased renal blood pressure or blood flow
     e. constrict the afferent arterioles and decrease sodium reabsorption


10. If the diameter of the afferent arteriole is smaller than the diameter of the efferent arteriole, then:
     a. the net filtration pressure will decrease
     b. blood pressure in the glomerulus will decrease
     c. GFR will increase
     d. a and b only
     e. a, b and c


11. From the distal convoluted tubule, filtrate will then be carried to the:
     a. renal corpuscle
     b. collecting duct
     c. nephron loop
     d. proximal convoluted tubule
     e. glomerular (Bowman's) capsule


12. In a patient who is dehydrated from vomiting and diarrhea, which is likely to be higher than normal in blood:
     a. ADH only
     b. aldosterone only
     c. ANP only
     d. both ADH and aldosterone
     e. both ADH and ANP


13. All of the following are normally found in urine except:
     a. glucose
     b. sodium ions
     c. uric acid
     d. urea
     e. creatinine


14. In some autoimmune diseases, capillaries may become damaged resulting in and high levels of albumin proteins and blood cells appearing in the urine. Which region of the nephron contains capillaries that, when damaged, could cause this appearance in urine:
     a. renal glomerulus
     b. proximal convoluted tubule
     c. nephron loop
     d. distal tubule


15. Regarding the renal circulation:
a) The kidneys receive about 10% of the resting cardiac output
b) As cardiac output increases during exercise renal blood flow rises.
c) Renal blood flow is maintained within narrow limits despite changes in arterial blood pressure.
d) Increased activity in the renal sympathetic nerves results in increased blood flow to the kidneys.

16. Regarding the glomerular filtration rate (GFR):
a) The GFR depends on the pressure in the afferent arterioles.
b) A substance that has a clearance less than the GFR must have been secreted by the renal tubules.
c) The glomerular filtration rate can be determined by measuring the clearance of insulin.
d) The glomerular filtrate has the same composition as plasma.

17. Regarding the transport of glucose by the renal tubules:
a) In a healthy person, the distal tubules reabsorb all of the filtered glucose.
b) Glucose is secreted into the urine in small quantities.
c) The transport maximum for glucose is about 36 mg min-1.
d) Glucose transport by the renal tubules is linked to sodium transport.

18. Concerning the excretion of acid by the kidneys:
a) The filtered bicarbonate is absorbed by anion transport.
b) The intercalated cells of the distal tubule secrete hydrogen ions to reabsorb bicarbonate from the tubular fluid.
c) All of the filtered bicarbonate is normally reabsorbed in the first half of the distal tubule.
d) Urine pH is normally greater than that of plasma.

19. Regarding the control of water balance by the kidneys:
a) The renal medulla has an osmotic gradient that decreases from the border with the cortex to the renal papilla.
b) ADH is secreted by the anterior pituitary in response to a decrease in the osmolality of the blood.
c) A normal person cannot produce urine with an osmolality greater than 300 mOsmol.kg-1.
d) ADH acts on the P cells of the collecting ducts to increase their permeability to water.

20. The term "renal autoregulation" refers in part to the fact that
A. the kidney does not require blood flow to sustain its active transport
B. the kidney contains baroreceptors (pressure receptors) that contribute to the regulation of cardiac output
C. renal blood flow is relatively constant over a wide range of systemic arterial pressures
D. renal blood flow is not affected by activation of the sympathetic nerves that innervate the kidney
E. a combination of both C and D above

21. The nerves that innervate the kidney are essential for regulating which of the following?
A. Na-K-ATPase active transport pump rate
B. renal autoregulation of blood flow
C. urine volume and tonicity (osmolality)
D. all of the above
E. none of the above

22. Which of the following would be expected to cause renal inulin (or creatinine) clearance to increase?
A. dilation of the afferent arteriole
B. dilation of the efferent arteriole
C. constriction of the afferent arteriole
D. constriction of the efferent arteriole
E. both A and D above

23. Kidney inflammation may result in the appearance of albumin (a plasma protein) in the urine because
A. more albumin enters the proximal tubule in the glomerular filtrate
B. reabsorption of albumin from the proximal tubule is inhibited
C. secretion of albumin into the distal tubule and collecting ducts is increased
D. increased peritubular blood flow makes more albumin available for diffusion into the tubule
E. reduced active transport of sodium ion reduces cotransport of other substances, including albumin

24. As blood passes along the glomerular capillaries from the afferent to efferent arteriole, the net filtration pressure (DP - Dp)
A. increases
B. decreases
C. first decreases, reaches a minimum about half way along the capillary, then increases
D. first increases, reaches a maximum about half way along the capillary, then decreases
E. remains constant

25. Sodium is actively reabsorbed from the renal tubule in which of the following nephron segments?
A. proximal tubule
B. distal tubule
C. thick ascending limb of the loop of Henle
D. all of the above
E. none of the above

26. The rate of water reabsorption from the proximal tubule is determined primarily by the
A. rate of dissolved particle (solute) reabsorption from the proximal tubule
B. concentration of ADH (antidiuretic hormone) in the blood
C. osmotic pressure developed by plasma proteins in the proximal tubule
D. active transport of water molecules by the proximal tubule cells
E. passive filtration due to the high hydrostatic pressure in the proximal tubule

27. Urea has a higher concentration in the fluid that leaves the proximal tubule (and enters the loop of Henle) than in blood plasma because
A. urea is synthesized by proximal tubule cells
B. urea is secreted into the proximal tubule
C. urea is reabsorbed from the proximal tubule but at a lesser rate that water is reabsorbed
D. urea diffuses back into the proximal tubule because of the high urea concentration in the renal medulla
E. urea is actively transported into Bowman's capsule from the glomerular capillaries

28. In the proximal tubule, penicillin is
A. actively secreted into the tubule
B. actively reabsorbed from the tubule
C. passively reabsorbed from the tubule
D. metabolized by the tubule cells
E. neither secreted nor reabsorbed nor metabolized

29. At which sites would the concentration of creatinine be expected to be highest? (Note: assume the person is normally hydrated.)
A. glomerular filtrate
B. end of the proximal tubule
C. end of the loop of Henle
D. urine
E. the concentration would be the same in all of the above, since creatinine is neither secreted or reabsorbed

30. Suppose a person loses the function of half his nephrons because of renal degenerative disease. Assuming the person survives and reaches a new steady state and that body urea production remains normal, which of the following would be expected to decrease below normal?
A. plasma urea concentration
B. renal urea excretion
C. renal urea clearance
D. urine urea concentration
E. all of the above

31. The following values are measured for potassium ion in a human subject.
Plasma K+                            5 meq/liter
Urine K+                               50 meq/liter
Renal creatinine clearance  80 ml/min
Urine formation rate             1.5 ml/minute
This patient's potassium clearance is closest to which of the following?
A.   5 ml/minute
B. 7.5 ml/minute
C. 15 ml/minute
D. 50 ml/minute
E. 75 ml/minute

32. Assuming the subject in the preceding question is a normal adult, we can conclude that most likely potassium is
A. filtered but not secreted or reabsorbed
B. secreted but not filtered or reabsorbed
C. reabsorbed but not secreted or filtered
D. filtered and secreted
E. filtered and reabsorbed

33. Stimulation of the osmoreceptors in the hypothalamus would be expected to cause all of the following to increase except
A. ADH release from the pituitary
B. water reabsorption from the renal collecting duct
C. rate of urine formation
D. osmolality of urine
E. none of the above; that is, none are exceptions since all would be expected to increase

33. As fluid passes along a juxtamedullary nephron, where is its osmolality (total concentration of dissolved particles) lowest? (Note: assume a normal concentration of circulating ADH.)
A. Bowman's capsule (glomerular filtrate)
B. fluid leaving the proximal tubule and entering the loop of Henle
C. fluid leaving the descending thin limb and entering the ascending thin limb of the loop of Henle
D. fluid leaving the thick ascending segment of the loop of Henle and entering the distal tubule
E. fluid leaving the collecting ducts (urine)

34 Drinking vodka (a beverage with a high ethanol content, for those of you unfamiliar with this substance) would be expected to cause excretion of a
A. large volume of concentrated urine
B. small volume of concentrated urine
C. large volume of dilute urine
D. small volume of dilute urine
E. normal volume of urine of normal osmolality

35. Drinking which of the following would lead to the highest rate of ADH secretion and release?
A. two liters of distilled water
B. two liters of sea water (mainly hyperosmotic saline)
C. two liters of iso-osmotic (isotonic) saline
D. two liters of human blood plasma
E. none of the above, since drinking two liters of any liquid leads to inhibition of ADH release

36. In a patient with severe renal artery stenosis (narrowing), all of the following would be expected to be increased above normal except
A. plasma renin concentration
B. plasma angiotensin II concentration
C. blood pressure (hydrostatic pressure) in the glomerular capillaries
D. resistance to blood flow in the efferent arteriole
E. systemic arterial blood pressure

37. Administration of an Angiotensin Converting Enzyme inhibitor (ACE inhibitor) to the above patient might lead to acute renal failure by
A. inhibiting renal tubule potassium reabsorption
B. increasing renal resistance to blood flow
C. causing plasma proteins to be excreted in the urine
D. causing systemic arterial hypertension
E. reducing glomerular filtration rate

38. Which of the following is the stimulus for increased secretion of atrial natriuretic peptide (ANP)?
A. increase blood plasma osmolality above normal
B. decrease blood plasma osmolality below normal
C. increase systemic arterial pressure
D. increase venous blood volume and atrial pressure
E. increase cardiac contractility (force of contraction)

39. An increase secretion of renin would be expected to have what effect on sodium excretion and potassium excretion in urine?
A. increase in Na+ excretion and increase K+ excretion
B. increase in Na+ excretion and decrease K+ excretion
C. decrease in Na+ excretion and increase K+ excretion
D. decrease in Na+ excretion and decrease K+ excretion
E. decrease in Na+ excretion but no effect on K+ excretion

40. In which of the following fluids is the pH highest (most alkaline)? (Assume the person is normal.)
A. systemic arterial blood plasma
B. systemic venous blood plasma
C. urine
D. all of the above, since pH is normally of the same for all
E. A and B above, since blood plasma pH is relatively uniform

41. The ammonium (NH4+) ion that may be present in urine is produced by
A. breakdown of urea in the liver
B. metabolism of amino acids in the renal tubule and collecting duct
C. aerobic carbohydrate metabolism
D. gylcolytic pathways during anaerobic metabolism
E. gluconeogensis during starvation

42. The reason that respiratory compensation for metabolic alkalosis can never be complete (return plasma pH to normal) is that (Note: PaCO2 = systemic arterial carbon dioxide partial pressure.)
A. high PaCO2 inhibits respiratory ventilation
B. high PaCO2 stimulates respiratory ventilation
C. low PaCO2 inhibits respiratory ventilation
D. low PaCO2 stimulates respiratory ventilation
E. none of the above, since respiratory compensation for metabolic alkalosis can be complete

43. The appearance of large amounts of ammonium ion (NH4+) in the urine is characteristic of the renal response to
A. respiratory acidosis
B. respiratory alkalosis
C. acidosis resulting from pancreatic diabetes
D. alkalosis resulting from gastric vomiting
E. both A and C above

44. An individual hoping for an LSD "acid high" mistakenly gives himself an intravenous injection of hydrochloric acid. The responses of his body which attempt to compensate for this ignorance of physiology include all of the following except
A. hyperventilation
B. increase in the acid form of the blood fixed buffers
C. decrease in blood bicarbonate ion concentration
D. increase in urine bicarbonate ion excretion
E. increase in urine ammonium ion excretion

45. A systemic arterial blood sample taken from the above individual an hour after his HCl "adventure" might show which of the following?
A. base excess = +10 meq/liter; PaCO2 = 50 mmHg
B. base excess = +10 meq/liter; PaCO2 = 30 mmHg
C. base excess = -10 meq/liter; PaCO2 = 50 mmHg
D. base excess = -10 meq/liter; PaCO2 = 30 mmHg
E. base excess = 0 meq/liter; PaCO2 = 40 mmHg

46.  A young woman is found comatose, having taken an unknown number of sleeping pills an unknown time before. An arterial blood sample yields the following values:
pH      7.02
HCO3-   14 meq/liter
PaCO2   68 mmHg
This patient's acid-base status is most accurately described as
A. uncompensated metabolic acidosis
B. uncompensated respiratory acidosis
C. simultaneous respiratory and metabolic acidosis
D. respiratory acidosis with partial renal compensation
E. respiratory acidosis with complete renal compensation


Question
Regarding the regulation of plasma sodium:
a) The granular cells of the afferent arterioles cells secrete renin when plasma sodium is low.
b) Angiotensin II is formed from renin by the action of an enzyme found on the endothelium of the pulmonary blood vessels.
c) The uptake of sodium ions is regulated by the proximal tubule.

d) Sodium transport by the thick ascending limb of the loop of Henle occurs by the same mechanism as that of the proximal tubule.

Popular Posts

Join This site